Forming Spacers in Situ by Photolithography to Mechanically Stabilize Electrofluidic-Based Switchable Optical Elements
نویسندگان
چکیده
Electro-Fluidic Displays (EFD) have been demonstrated to be an attractive technology for incorporation into portable display devices. EFDs have excellent optical efficiency and fast switching enabling video content. Ensuring mechanical stability of EFD display cells is a key challenge and essential for developing large area as well as flexible displays. Although the electro-optic performance of an EFD, unlike a liquid crystal display (LCD), is insensitive to cell-gap, extreme changes in cell-gap can result in irreversible collapse of the cell. Here we use photolithography to develop spacers to prevent cell-gap collapse and provide the required mechanical stability for EFD devices. The spacer is formed directly on the cover plates (ITO/glass) after cell assembly with UV light induced phase separation polymerization in the illuminated area. Phase separation behavior between polar aqueous solution and polymer is closely related to the solubility of acrylate monomers. In this work, polyethylene glycol diacrylate (PEGDA) as cross-linker, 2-hydroxyethyl acrylate (HEA) and acrylic acid or acrylamide as co-monomers are investigated for fabricating the spacers. PEGDA was added to the mixtures in order to increase the mechanical strength of the spacer. The spacers showed excellent performance for cell-gap control in EFD devices.
منابع مشابه
10.4: Mechanically Stabilized Bistable FLC Cells on Plastic Substrates
The electro-optical properties of a fully flexible photo-aligned FLC cell are investigated. Two different methods, sticky spacers together with a photo-sensitive monomer and polymer spacers in a regular pattern formed by photo-lithography, are proposed to stabilize the structure in order to increase the bending tolerance of the FLC material during deformation of the cell.
متن کاملIN SITU FABRICATION OF Al 2024-Mg2Si COMPOSITE BY SPARK PLASMA SINTERING OF REACTIVE MECHANICALLY ALLOYED POWDER
In situ Al2024- Mg2Si composite was fabricated by spark plasma sintering (SPS) of reactive powder. Reactive powder was obtained from mechanical alloying (MA) of elemental powders. Clad layers of in situ composite were fabricated on Al substrates by spark plasma sintering (SPS). Structural evolution during MA process and after SPS was investigated by X-ray diffractometery (XRD). Scanning electro...
متن کاملElectrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer
Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...
متن کاملSwitchable ionic liquids enable efficient nanofibrillation of wood pulp
Use of switchable ionic liquid (SIL) pulp offers an efficient and greener technology to produce nanofibers via ultrafine grinding. In this study, we demonstrate that SIL pulp opens up a mechanically efficient route to the nanofibrillation of wood pulp, thus providing both a low cost and chemically benign route to the production of cellulose nanofibers. The degree of fibrillation during the proc...
متن کاملMechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics.
We theoretically introduce a new type of optical all-pass filter based on guided resonance in coupled photonic crystal slabs. The filter exhibits near-complete transmission for both on- and off-resonant frequencies and yet generates large resonant group delay. We further show that such a filter can be mechanically switched into a flat-top band rejection filter.
متن کامل